
pg_upgrade
like a boss!
Alexander Kukushkin

PGConf.DE 2024, München

 2024-04-12

About me

Alexander Kukushkin

Principal Software Engineer @Microsoft

The Patroni guy

akukushkin@microsoft.com

Twitter: @cyberdemn

2

https://twitter.com/Microsoft
mailto:alexander.kukushkin@zalando.de
https://twitter.com/cyberdemn

Agenda

● Why upgrade?

● Types of upgrades

● pg_upgrade

● Upgrading HA setups

● Conclusion

3

Why upgrade?

● Security fixes

● Bugfixes

● Performance improvements

● New features
4

Why upgrade!

https://why-upgrade.depesz.com/show?from=13.13&to=16.1

5

https://why-upgrade.depesz.com/show?from=13.13&to=16.1

Versioning policy

● $major.$minor

○ 16.2, 15.6, 14.11, 13.14, 12.18

● Major releases every year

● Minor releases every quarter

● Read more about policy and release schedule

6

https://www.postgresql.org/support/versioning/

Types of upgrades

● Minor upgrade

○ 16.0 -> 16.2

● Major upgrade

○ 13.7 -> 16.2

7

Minor upgrade

● 16.1 -> 16.2
● Read release notes!

○ sometimes standby needs to be upgraded first!
● Install new binaries
● Restart Postgres
● For minor releases, the community considers not

upgrading to be riskier than upgrading!

8

Major upgrades

9

type downtime resources complexity risk

dump/restore high, depends on DB size double (disk space) low low

pg_upgrade --copy high, depends on DB size double (disk space) high low

pg_upgrade --link depends on the number
of objects in DB, usually
below one minute

low high high

pg_upgrade --clone depends on the number
of objects in DB, usually
below one minute

low high low

Logical replication sub-second double high medium

pg_upgrade --link vs --clone

● Old and new PGDATA must be located on the same
filesystem

● --link
○ uses hardlinks

● --clone
○ clones files, safer than --link
○ doesn’t work with rsync method for upgrading

standbys

10

pg_upgrade workflow

1. install new major binaries

2. initdb – initialize the new cluster

3. shut down the old cluster

4. run pg_upgrade

5. start the new cluster
11

How pg_upgrade works: initial state

12

Old cluster

pg_catalog
table1
table2
table3

u
se

r
d

at
a

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

New cluster

pg_catalog

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

Freeze

13

Old cluster

pg_catalog

table1
table2
table3

u
se

r
d

at
a

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

New cluster

pg_catalog

freeze

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

Copy clog and multixact

14

Old cluster

pg_catalog

table1
table2
table3

u
se

r
d

at
a

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

New cluster

pg_catalog

freeze

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

copy

xid, mxid

dump/restore schema

15

Old cluster

pg_catalog
table1
table2
table3

u
se

r
d

at
a

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

New cluster

pg_catalog
table1
table2
table3

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

Copy/clone/relink relation files

16

Old cluster

pg_catalog
table1
table2
table3

u
se

r
d

at
a

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

New cluster

pg_catalog

u
se

r
d

at
a

p
g_

xa
ct

p
g_

m
u

lt
ix

ac
t

p
g_

co
nt

ro
l

Before major upgrade

● read release notes (including intermediate versions)!

○ incompatibilities must be addressed before pg_upgrade

● try pg_upgrade --check

○ if there are any problems reported - fix them

○ it can’t find everything, but improves every major release

● make a backup (pgBackRest, wal-g, barman)

● test!

○ backup/restore

○ try to upgrade restored backup

17

initdb

18

● new cluster must be initialized with the same --locale,

--encoding, --data-checksums, and --wal-segsize

○ SHOW lc_collate;

○ SHOW server_encoding;

○ SHOW data_checksums;

○ SHOW wal_segment_size;

Extensions

19

● pg_upgrade keeps old versions of extensions
○ extension version must be available for old and new major

version
○ update extensions before and/or after pg_upgrade

● some extensions need special care (pre/post upgrade)
○ Citus
○ PostGIS

● some extensions can’t be upgraded
○ pg_repack

pg_upgrade --check – false positives

 CREATE FUNCTION test() RETURNS SETOF pg_stat_activity
 LANGUAGE SQL SECURITY DEFINER
 AS $$ SELECT * FROM pg_stat_activity; $$;

 CREATE VIEW test AS SELECT * FROM test();

20

● pg_upgrade --check – *Clusters are compatible*

● but, pg_upgrade – *failure*

● strategy:

○ restore from the backup and run pg_upgrade

○ if fails - fix problems

○ repeat

Minimizing downtime

● Do all preparations before calling pg_upgrade (and stopping the primary)

○ cleanups, initdb, etc

● Manually run a few times CHECKPOINT

○ Speeds up pg_ctl stop -m fast

● Use pg_upgrade --clone or --link

○ New and old PGDATA must be located on the same filesystem

■ /pgdata/12 # old PGDATA

■ /pgdata/16 # new PGDATA

● Use --jobs=N

○ parallel schema dump/restore and relinking
21

After pg_upgrade

● rebuild table statistics

○ vacuumdb --all --analyze-in-stages

● restore dropped objects

● trigger creation of new basebackup!

22

Analyze in stages

SET default_statistics_target = 1;
ANALYZE;
/* at this point, usually, we are good enough to allow connections */

SET default_statistics_target = 10;
ANALYZE;
SET default_statistics_target = 100;
ANALYZE;

23

Beware non default statistics target set on columns!

postgres=# \d+ test
 TABLE "public.test"
 COLUMN | TYPE | Collation | NULLABLE | DEFAULT | Storage | Compression | Stats target | Description
--------+--------+-----------+----------+---------+----------+-------------+--------------+-------------
 id | BIGINT | | NOT NULL | | plain | | |
 name | text | | | | extended | | 1000 |
Indexes:
 "test_pkey" PRIMARY KEY, btree (id)
Access method: heap

24

● Breaks --analyze-in-stages

○ ANALYZE on test table will always read 300*1000 tuples

instead of 300*default_statistics_target

○ Even the first stage is veeeery slow

Solution

1. ALTER TABLE test ALTER COLUMN name
SET STATISTICS -1; /* reset custom setting */

2. vacuumdb --all --analyze-in-stages

3. ALTER TABLE test ALTER COLUMN name
SET STATISTICS 1000; /* restore custom setting */

4. ANALYZE test; /* rebuild statistics with custom setting */

25

Speed up vacuumdb --all --analyze-in-stages

● Use --jobs N parameter for vacuumdb

● But, parallelism is maybe not what you think!

○ Sequentially goes over databases in the cluster and

does ANALYZE on N tables in parallel

○ What if we have 16 database with 1 huge table in each?

○ Run multiple vacuumdb -d $DB instead of a single

vacuumdb --all

26

● Rebuild standby nodes using backup tools:

○ the safest option

○ backup/restore takes time

○ pg_basebackup is slow, speed ~1TB/h :(

● Upgrade standbys with rsync

Upgrading HA setups

27

https://www.postgresql.org/docs/current/pgupgrade.html#PGUPGRADE-STEP-REPLICAS

Upgrading standbys with rsync

● Described in Postgres docs

● requires pg_upgrade --link

● relies on the fact that user relation data files in

primary and standby PGDATA are fully identical

○ We have to ensure that standby is up-to-date!

28

https://www.postgresql.org/docs/current/pgupgrade.html#PGUPGRADE-STEP-REPLICAS

How postgres stores relations on filesystem

postgres=# CREATE TABLE test(id BIGINT NOT NULL PRIMARY KEY, name text);

CREATE TABLE

postgres=# INSERT INTO test SELECT i, 'test' FROM generate_series(1, 1000000) AS i;

INSERT 0 1000000

postgres=# SELECT oid, relfilenode FROM pg_class WHERE relname = 'test';

 oid | relfilenode

-------+-------------

 16394 | 16402

(1 ROW)

$ ls -gi pg12/base/13498/16402*

40372037 -rw------- 1 akukushkin 44285952 Jan 24 09:50 pg12/base/13498/16402

40372067 -rw------- 1 akukushkin 32768 Jan 24 09:49 pg12/base/13498/16402_fsm

29

$ /usr/lib/postgresql/16/bin/pg_upgrade --link \
 -b /usr/lib/postgresql/12/bin \
 -B /usr/lib/postgresql/16/bin \
 -d pg12 -D pg16

...
Adding ".old" suffix to old global/pg_control ok

If you want to start the old cluster, you will need to remove
the ".old" suffix from pg12/global/pg_control.old.
Because "link" mode was used, the old cluster cannot be safely
started once the new cluster has been started.
Linking user relation files
 ok
Setting next OID for new cluster ok
Sync data directory to disk ok
Creating script to delete old cluster ok
Checking for extension updates ok

Upgrade Complete

Using pg_upgrade --link

30

Checking linked files

$ ls -gi pg12/base/13498/16402*

40372037 -rw------- 2 akukushkin 44285952 Jan 24 09:50 pg12/base/13498/16402

40372067 -rw------- 2 akukushkin 32768 Jan 24 09:49 pg12/base/13498/16402_fsm

$ ls -gir pg16/base/13498/16402*

40372067 -rw------- 2 akukushkin 32768 Jan 24 09:49 pg16/base/13498/16402_fsm

40372037 -rw------- 2 akukushkin 44285952 Jan 24 09:50 pg16/base/13498/16402

* Inodes in the new PGDATA remain the same.

31

Upgrade standby with rsync

$ rsync \
 --archive \
 --delete \
 --hard-links \
 --size-only \
 --no-inc-recursive \
 /var/lib/postgres/pgdata/pg12 \
 /var/lib/postgres/pgdata/pg16 \
 standby.example.com:/var/lib/postgres/pgdata

32

same as -r -l -p -t -g -o -D, see below
delete extraneous files from dest dirs
look for hard-linked files in the source and link to corresponding files on the destination!
copy files only if size doesn’t match (ignore mtime and content!)
scan the full file list before transfering files

-r – recursive
-l – copy symlinks as symlinks
-p – preserve permissions
-t – preserve mtime
-g – preserve group
-o – preserve owner
-D – preserve devices and special files

Standby after rsync

Standby before rsync:
/var/lib/postgres/pgdata/pg12/
/var/lib/postgres/pgdata/pg12/base/
/var/lib/postgres/pgdata/pg12/base/1/
/var/lib/postgres/pgdata/pg12/base/1/112
…
/var/lib/postgres/pgdata/pg12/13498/16402
…
/var/lib/postgres/pgdata/pg16/ # doesn’t exist

33

Standby after rsync:
/var/lib/postgres/pgdata/pg12/
/var/lib/postgres/pgdata/pg12/base/
/var/lib/postgres/pgdata/pg12/base/1/
/var/lib/postgres/pgdata/pg12/base/1/112
…
/var/lib/postgres/pgdata/pg12/13498/16402
…
/var/lib/postgres/pgdata/pg16/
/var/lib/postgres/pgdata/pg16/base/
/var/lib/postgres/pgdata/pg16/base/1/
/var/lib/postgres/pgdata/pg16/base/1/112
…
/var/lib/postgres/pgdata/pg16/13498/16402
…

copied from the primary

h
ar

d
lin

k,
 n

o
 c

o
p

y!

HA major upgrade - full procedure

● preparations mainly as for normal pg_upgrade

○ truncate unlogged/temp tables (to avoid copying them to

standby nodes by rsync)

● make sure that standby nodes are not lagging!

● stop the primary (manual CHECKPOINT + pg_ctl stop -m fast)

● get Latest checkpoint location from pg_controldata output

○ make sure that standby applied WAL up to checkpoint LSN!

● run pg_upgrade --link …

34

HA major upgrade - full procedure (continue)

● Don’t start postgres on primary after pg_upgrade until rsync finished!

● Stop standby nodes (could be done in parallel with pg_upgrade)

● run rsync for all standby nodes

● start postgres on the primary

● trigger statistics rebuild on the primary:

○ vacuumdb --all --analyze-in-stages

● restore dropped objects (if needed), update extensions, etc

● trigger creation of new basebackup

35

HA major upgrade - full procedure (continue)

● update config files on standby nodes (they are rsynced from the

primary)

○ pg_hba.conf

○ postgresql*.conf: (primary_conninfo & co)

○ standby.signal)

● start postgres on standby nodes

● verify that replication works
● remove old PGDATA on all nodes (if everything is fine)

36

● usually rsync works via remote shell (ssh)
● in the cloud (containers) configuring ssh and distributing

keys just for major upgrade is too much
● we can use rsync daemon instead

○ run daemon on the primary, with read-only access
○ clients on standby nodes

● rsync-ssl – wrapper to add ssl support
○ we may use the same certificates as for postgres

Tricks with rsync

37

What if something goes wrong?

● pg_upgrade failed - just start the old cluster

○ sometimes requires removing .old suffix from

global/pg_control.old

● rsync failed - rebuild standby nodes using

pg_basebackup or other backup tools

● as a precaution keep one standby intact
38

● downtime of pg_upgrade --link + rsync depends only on the

number of objects in the cluster and doesn’t depend on the total

size of data

● for small and medium size clusters it’s possible to do major

upgrade with only 10s-20s of downtime (excluding statistics

rebuild)

● waste majority of clusters could be upgraded with downtime less

than 1 minute.

Downtime

39

Unsolved (yet) problems

● replication slots are lost (solved in v17)

● subscriptions are preserved, but not reactivated

● table statistics rebuild may take significantly longer

than major upgrade

○ WIP: Statistics Import and Export

40

https://www.postgresql.org/message-id/flat/CADkLM%3DcB0rF3p_FuWRTMSV0983ihTRpsH%2BOCpNyiqE7Wk0vUWA%40mail.gmail.com

Conclusion

● pg_upgrade --link + rsync is a fast method of major upgrades

with a small downtime

○ no additional resources required

● There are some problems, but community works on solving

them

● always do backups and test recovery procedures!

41

Questions?

42

